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Week 7

The following example shows one familiar application of the Intermediate Value

Theorem.

Example 0.1

Use the IMVT to prove that the equation x3−3x2+10x−4 = 0 has a solution

between 0 and 1.

If we let f(x) = x3 − 3x2 + 10x − 4 then we know that f(x) is continuous at

every x ∈ R and so is continuous over [0,1].

We have f(0) = −4 and f(1) = 4 and so by the IMVT we conclude that there

is some c ∈ (0, 1) such that f(c) = 0.

Recall that some quadratics have no real roots.

Example 0.2

• x2 + 1 has no real roots since

x2 + 1 = 0 ⇒ x2 + 1 = 0 ⇒ x2 = −1 ⇒ x = ±i.

• x2 + x+ 1 has no real roots since

x2 + x+ 1 = 0 ⇒ x =
−1±

√

(−1)2 − 4(1)(1)

2
=

−1±
√
−3

2
=

−1

2
± 3

2
i.

By contrast we can show that any polynomial of odd degree has at least one

real root. The following example illustrates the general argument:
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Example 0.3

Consider the polynomial f(x) = x3 − 10x2 + 7x+ 1:

x3 − 10x2 + 7x+ 1 = x3

(

1− 10

x
+

7

x2
+

1

x3

)

Note that

lim
x→∞

(

1− 10

x
+

7

x2
+

1

x3

)

= 1

and

lim
x→−∞

(

1− 10

x
+

7

x2
+

1

x3

)

= 1.

This means that 1− 10

x
+

7

x2
+

1

x3
becomes arbitrarily close to 1 as x approaches

∞ and as x approaches −∞.

It follows that there is some a < 0 such that

1− 10

x
+

7

x2
+

1

x3
> 0 for all x ≤ a.

and there is some b > 0 such that

1− 10

x
+

7

x2
+

1

x3
> 0 for all x ≥ b.

Since a3 < 0 and b3 > 0 we have

f(a) = (-ve)(+ve) < 0

and

f(b) = (+ve)(+ve) > 0

And so we have a continuous function f(x) with f(a) < 0 < f(b) and so, by

the IMVT, it follows that there is some point c ∈ (a, b) such that f(c) = 0.

That is, there is some x ∈ R such x3 − 10x2 + 7x+ 1 = 0.

0.0.1 Boundedness Properties of Continous Functions

Theorem 0.4

Let f be a real-valued funtion. If f is continuous over a closed bounded interval

[a, b] then f has a maximum and a minimum value in [a, b].

We will not supply a proof of this result but rather look at some counter-

examples.
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• f(x) =

{

x2, x ∈ (−2, 2),

3, x = ±2.

1

2

3

4

1 2−1−2

bc bc

bb

is an example of a function not continuous over a closed bounded interval. f

has no maximum value in the interval.

• f(x) = x2, x ∈ (−2, 2)

1

2

3

4

1 2−1−2

bc bc

is a continuous function defined over a bounded not closed interval. f has no

maximum value in the interval.
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• f(x) = x2, x ∈ [0,∞)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

is a continuous function defined over an unbounded closed interval. f has no

maximum value in the interval.

0.1 Differentiation

Definition 0.5

Let f be a real-valued function defined over an interval containing a ∈ R.

If: lim
h→0

f(a+ h)− f(a)

h
exists then f is said to be differentiable at a.

The value of lim
h→0

f(a+ h)− f(a)

h
is called the derivative of f at a and is denoted

usually as f ′(a) and sometimes as
df(x)

dx

∣

∣

∣

∣

∣

x=a

.

Notes:

The limit lim
h→0

f(a+ h)− f(a)

h
can also be written as lim

x→a

f(x)− f(a)

x− a

The expression
f(a+ h)− f(a)

h
or

f(x)− f(a)

x− a
is known as a Newton Quotient.

The following diagram shows that the Newton Quotient is the slope of the

chord joining the points (a, f(a)) and (a+ h, f(a+ h)).

As h approaches 0 the slope of the chord approaches the slope of the tangent

to the curve at (a, f(a)).
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(a, f(a))

(a+ h, f(a+ h))

From this observation we arrive at the fact that f ′(a) is the slope of the tangent

to the curve y = f(x) at the point f(a) and is thus also known as the slope of

the curve.

We can infer from this that a function f is differentiable at a if there is a well

defined tangent at the point (a, f(a)).

Consider, for example, the function f(x) = |x|. This has graph:

The Newton Quotient at 0 is

f(0 + h)− f(0)

h
=

|0 + h| − |0|
h

=
|h|
h

In order to examine lim
h→0

f(0 + h)− f(0)

h
we must use left-hand and right-hand

limits:

lim
h→0+

|h|
h

= lim
h→0+

h

h
= lim

h→0+
1 = 1

and

lim
h→0−

|h|
h

= lim
h→0−

−h

h
= −1

And we see that lim
h→0

|0 + h| − |0|
h

does not exist. Therefore |x| is not differen-

tiable at 0.

There is a connection between differentiability and continuity.
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Theorem 0.6

If f is differentiable at a ∈ R then f is continuous at a.

Proof

lim
x→a

f(x) = lim
x→a

(f(x)− f(a) + f(a)) = lim
x→a

(

f(x)− f(a)

x− a
(x− a)

)

+ f(a)

= lim
x→a

f(x)− f(a)

x− a
lim
x→a

(x− a) + f(a) = f ′(a).0 + f(a) = f(a).

That is, lim
x→a

f(x) = f(a)

That is, f is continous at a.

The above theorem proves that differentiability implies continuity. However, the

converse is not true, that is, a function can be continuous but not differentiable

at a point.

Example 0.7

The function f(x) = |x| is continuous at 0 because

lim
x→0+

f(x) = lim
x→0+

x = 0

lim
x→0−

f(x) = lim
x→0+

− x = 0

The left-hand and right-hand limits both exist and are both equal to 0 and so

it follows that lim
x→0

f(x) = 0 = f(0), therefore f is continuous at 0. We have

already shown the |x| is not differentiable at 0.

Note: If f is differentiable at every point of (a, b) then f is said to be differ-

entiable over (a, b).

0.1.0.1 Some properties of derivatives..

If u(x) and v(x) are both differentiable at x then

1. uv is differentiable at x with

(uv)′ = u′v + uv′
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2. If v(x) 6= 0 then
u

v
is differentiable at x with

(u

v

)

′

=
u′v − uv′

v2

3. If u is differentiable at v(x) then

(u(v(x)))′ = u′(v(x))v′(x).

This is known as the Chain Rule.


