Pat O'Sullivan

Mh4714 Week 7

Week 7

The following example shows one familiar application of the Intermediate Value Theorem.

Example 0.1

Use the IMVT to prove that the equation $x^{3}-3 x^{2}+10 x-4=0$ has a solution between 0 and 1 .
If we let $f(x)=x^{3}-3 x^{2}+10 x-4$ then we know that $f(x)$ is continuous at every $x \in \mathbb{R}$ and so is continuous over $[0,1]$.
We have $f(0)=-4$ and $f(1)=4$ and so by the IMVT we conclude that there is some $c \in(0,1)$ such that $f(c)=0$.

Recall that some quadratics have no real roots.

Example 0.2

- $x^{2}+1$ has no real roots since

$$
x^{2}+1=0 \Rightarrow x^{2}+1=0 \Rightarrow x^{2}=-1 \Rightarrow x= \pm i
$$

- $x^{2}+x+1$ has no real roots since

$$
x^{2}+x+1=0 \Rightarrow x=\frac{-1 \pm \sqrt{(-1)^{2}-4(1)(1)}}{2}=\frac{-1 \pm \sqrt{-3}}{2}=\frac{-1}{2} \pm \frac{3}{2} i .
$$

By contrast we can show that any polynomial of odd degree has at least one real root. The following example illustrates the general argument:

Example 0.3

Consider the polynomial $f(x)=x^{3}-10 x^{2}+7 x+1$:

$$
x^{3}-10 x^{2}+7 x+1=x^{3}\left(1-\frac{10}{x}+\frac{7}{x^{2}}+\frac{1}{x^{3}}\right)
$$

Note that

$$
\lim _{x \rightarrow \infty}\left(1-\frac{10}{x}+\frac{7}{x^{2}}+\frac{1}{x^{3}}\right)=1
$$

and

$$
\lim _{x \rightarrow-\infty}\left(1-\frac{10}{x}+\frac{7}{x^{2}}+\frac{1}{x^{3}}\right)=1
$$

This means that $1-\frac{10}{x}+\frac{7}{x^{2}}+\frac{1}{x^{3}}$ becomes arbitrarily close to 1 as x approaches ∞ and as x approaches $-\infty$.
It follows that there is some $a<0$ such that

$$
1-\frac{10}{x}+\frac{7}{x^{2}}+\frac{1}{x^{3}}>0 \text { for all } x \leq a
$$

and there is some $b>0$ such that

$$
1-\frac{10}{x}+\frac{7}{x^{2}}+\frac{1}{x^{3}}>0 \text { for all } x \geq b
$$

Since $a^{3}<0$ and $b^{3}>0$ we have

$$
f(a)=(-\mathrm{ve})(+\mathrm{ve})<0
$$

and

$$
f(b)=(+\mathrm{ve})(+\mathrm{ve})>0
$$

And so we have a continuous function $f(x)$ with $f(a)<0<f(b)$ and so, by the IMVT, it follows that there is some point $c \in(a, b)$ such that $f(c)=0$. That is, there is some $x \in \mathbb{R}$ such $x^{3}-10 x^{2}+7 x+1=0$.

0.0.1 Boundedness Properties of Continous Functions

Theorem 0.4

Let f be a real-valued funtion. If f is continuous over a closed bounded interval $[a, b]$ then f has a maximum and a minimum value in $[a, b]$.

We will not supply a proof of this result but rather look at some counterexamples.

- $f(x)=\left\{\begin{array}{l}x^{2}, x \in(-2,2), \\ 3, x= \pm 2 .\end{array}\right.$

is an example of a function not continuous over a closed bounded interval. f has no maximum value in the interval.
- $f(x)=x^{2}, x \in(-2,2)$

is a continuous function defined over a bounded not closed interval. f has no maximum value in the interval.
- $f(x)=x^{2}, x \in[0, \infty)$

is a continuous function defined over an unbounded closed interval. f has no maximum value in the interval.

0.1 Differentiation

Definition 0.5

Let f be a real-valued function defined over an interval containing $a \in \mathbb{R}$.
If: $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ exists then f is said to be differentiable at a.
The value of $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ is called the derivative of f at a and is denoted usually as $f^{\prime}(a)$ and sometimes as $\left.\frac{d f(x)}{d x}\right|_{x=a}$.

Notes:
The limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ can also be written as $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
The expression $\frac{f(a+h)-f(a)}{h}$ or $\frac{f(x)-f(a)}{x-a}$ is known as a Newton Quotient.
The following diagram shows that the Newton Quotient is the slope of the chord joining the points $(a, f(a))$ and $(a+h, f(a+h))$.
As h approaches 0 the slope of the chord approaches the slope of the tangent to the curve at $(a, f(a))$.

From this observation we arrive at the fact that $f^{\prime}(a)$ is the slope of the tangent to the curve $y=f(x)$ at the point $f(a)$ and is thus also known as the slope of the curve.

We can infer from this that a function f is differentiable at a if there is a well defined tangent at the point $(a, f(a))$.
Consider, for example, the function $f(x)=|x|$. This has graph:

The Newton Quotient at 0 is

$$
\frac{f(0+h)-f(0)}{h}=\frac{|0+h|-|0|}{h}=\frac{|h|}{h}
$$

In order to examine $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$ we must use left-hand and right-hand limits:

$$
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1
$$

and

$$
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=-1
$$

And we see that $\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}$ does not exist. Therefore $|x|$ is not differentiable at 0 .

There is a connection between differentiability and continuity.

Theorem 0.6

If f is differentiable at $a \in \mathbb{R}$ then f is continuous at a.

Proof

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}(f(x)-f(a)+f(a))=\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}(x-a)\right)+f(a) \\
=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a}(x-a)+f(a)=f^{\prime}(a) \cdot 0+f(a)=f(a) .
\end{gathered}
$$

That is, $\lim _{x \rightarrow a} f(x)=f(a)$
That is, f is continous at a.
The above theorem proves that differentiability implies continuity. However, the converse is not true, that is, a function can be continuous but not differentiable at a point.

Example 0.7

The function $f(x)=|x|$ is continuous at 0 because

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=0 \\
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}}-x=0
\end{gathered}
$$

The left-hand and right-hand limits both exist and are both equal to 0 and so it follows that $\lim _{x \rightarrow 0} f(x)=0=f(0)$, therefore f is continuous at 0 . We have already shown the $|x|$ is not differentiable at 0 .

Note: If f is differentiable at every point of (a, b) then f is said to be differentiable over (a, b).

0.1.0.1 Some properties of derivatives..

If $u(x)$ and $v(x)$ are both differentiable at x then

1. $u v$ is differentiable at x with

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

2. If $v(x) \neq 0$ then $\frac{u}{v}$ is differentiable at x with

$$
\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}
$$

3. If u is differentiable at $v(x)$ then

$$
(u(v(x)))^{\prime}=u^{\prime}(v(x)) v^{\prime}(x) .
$$

This is known as the Chain Rule.

